Towards Interpretable Multi-task Learning Using Bilevel Programming

نویسندگان

چکیده

Interpretable Multi-Task Learning can be expressed as learning a sparse graph of the task relationship based on prediction performance learned models. Since many natural phenomenon exhibit structures, enforcing sparsity models reveals underlying relationship. Moreover, different sparsification degrees from fully connected uncover various types like cliques, trees, lines, clusters or disconnected graphs. In this paper, we propose bilevel formulation multi-task that induces graphs, thus, revealing relationships, and an efficient method for its computation. We show empirically how induced improves interpretability their synthetic real data, without sacrificing generalization performance. Code at https://bit.ly/GraphGuidedMTL

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical and Interpretable Skill Acquisition in Multi-task Reinforcement Learning

Learning policies for complex tasks that require multiple different skills is a major challenge in reinforcement learning (RL). It is also a requirement for its deployment in real-world scenarios. This paper proposes a novel framework for efficient multi-task reinforcement learning. Our framework trains agents to employ hierarchical policies that decide when to use a previously learned policy a...

متن کامل

Multi-Task Learning via Conic Programming

When we have several related tasks, solving them simultaneously is shown to be more effective than solving them individually. This approach is called multi-task learning (MTL) and has been studied extensively. Existing approaches to MTL often treat all the tasks as uniformly related to each other and the relatedness of the tasks is controlled globally. For this reason, the existing methods can ...

متن کامل

A New Method For Solving Linear Bilevel Multi-Objective Multi-Follower Programming Problem

Linear bilevel programming is a decision making problem with a two-level decentralized organization. The leader is in the upper level and the follower, in the lower level. This study addresses linear bilevel multi-objective multi-follower programming (LB-MOMFP) problem, a special case of linear bilevel programming problems with one leader and multiple followers where each decision maker has sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-67661-2_35